Isolation, purification and expansion of myelination-competent, neonatal mouse Schwann cells.
نویسندگان
چکیده
Most studies of peripheral nerve myelination using culture models are performed with dorsal root ganglion neurons and Schwann cells pre-purified from the rat. The potential of this model is severely compromised by the lack of rat myelin mutants and the published protocols work poorly with mouse cells, for which numerous myelin mutants are available. This is partly due to difficulties in obtaining sufficient quantities of myelination-competent mouse Schwann cells. Here, we describe the isolation, purification and expansion of wild-type, myelination-competent Schwann cells from the sciatic nerves of 4-day-old mouse pups. The method consistently yields 1.9-3.3 x 10(6) of approximately 95% pure Schwann cells from the sciatic nerves of 12-15 4-day-old mouse pups, within 14-20 days. The Schwann cell proliferation rate ranges from 2.7- to 4.30-fold growth/week. Proliferation ceases within 4 weeks, when the cells become quiescent. Growth is reinduced by the presence of neurons; neuregulin is not sufficient for this effect. The Schwann cells isolated by this protocol are able to form compact myelin in culture, as judged by the segregated expression patterns of early (myelin-associated glycoprotein) and late (myelin basic protein) myelination markers in a three-dimensional neuron/Schwann cell coculture model. The Schwann cell batch yields are sufficient to perform 100-150 individual myelinating coculture assays. Employing mixed phenotype/genotype mouse neuron/Schwann cell cocultures, it will be possible to analyse the cell specificity of a mutation, and the cumulative effects of different mutations, without having to cross-breed the animals.
منابع مشابه
A Simplified Protocol for the Purification of Schwann Cells and Exosome Isolation from C57BL/6 Mice
Background: The purification of Schwann cells has proven to be a difficult process, with most methods requiring the use of special equipment. However, obtaining a sufficient number and high purity of Schwann cells is an integral aspect in their use for clinical application. Therefore, the aim of this study was to establish a simple and effective protocol for the isolation and purification of Sc...
متن کاملComparison of Neonatal and Adult Mice-derived Sertoli Cells in Support of Expansion of Mouse Spermatogonial Stem Cells In vitro
متن کامل
The Protooncogene Ski Controls Schwann Cell Proliferation and Myelination
Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the m...
متن کاملDystonin is an essential component of the Schwann cell cytoskeleton at the time of myelination.
A central role for the Schwann cell cytoskeleton in the process of peripheral nerve myelination has long been suggested. However, there is no genetic or biological evidence as yet to support this assumption. Here we show that dystonia musculorum (dt) mice, which carry mutations in dystonin, a cytoskeletal crosslinker protein, have hypo/amyelinated peripheral nerves. In neonatal dt mice, Schwann...
متن کاملInvolvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination
During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear. Here we show that signaling through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2007